p-adic Ordinals of Eigenvalues of F-crystals

Arthur Ogus

November 21, 2018

On page 8-46 of [1], I gave an incorrect definition of the slopes of an Fcrystal. Namely, I asserted that if (E, Φ) is an F crystal over the Witt ring W of a perfect field k, then its slopes can be computed by writing the matrix for Φ in any basis and computing the p-adic ordinals of the eigenvalues of this matrix. This is false, and in fact these ordinals are not independent of the choice of basis.

Here is an example. Let W be the Witt ring of the field with 9 elements, which can be expressed as $\mathbf{Z}_{3}[i]$, where $i^{2}=-1$. Let E be the rank two F crystal over W given in a basis x, y by $\Phi(x)=y, \Phi(y)=3 x$. The eigenvalues of the linear map defined by these equations are $\pm i \sqrt{3}$. Now consider the basis x, y^{\prime} for this crystal, where $y^{\prime}:=y+i x$ and $y=y^{\prime}-i x$. Then $F_{W}(i)=$ $-i$, and so

$$
\Phi(x)=y=y^{\prime}-i x
$$

and

$$
\Phi\left(y^{\prime}\right)=\Phi(y+i x)=\Phi(y)-i \Phi(x)=3 x-i\left(y^{\prime}-i x\right)=2 x-i y^{\prime} .
$$

The corresponding linear map is given by the matrix $\left(\begin{array}{cc}-i & 2 \\ 1 & -i\end{array}\right)$. One sees from the Newton polygon of its characteristic polynomial $t^{2}+2 i-3$ that the ordinals of its eigenvalues are 0 and 1 . (In fact these eigenvalues are $-i \pm \sqrt{2}$.)

References

[1] P. Berthelot and A. Ogus. Notes on Crystalline Cohomology, volume 21 of Annals of Mathematics Studies. Princeton University Press, Princeton, 1978.

